Week g - Friday

COMP 2100

= What did we talk about last time?

= Graph representations
= Agjacency matrix

= Adjacency lists
= Depth-first search
= Breadth-first search

Questions?

Project 3

Assignment 4

Cycle Detection

= We have spent a huge amount of time on trees in this class

= Trees have many useful properties

= What is the important difference between a tree and a graph?
m Cycles

= Well, technically a tree is also connected

= [sagraph atree?

= [t might be hard to tell

= We need to come up with an algorithm for detecting any
cycles within the possible tree

= What can we use?

= Depth First Search!

= Nodes all need some extra information, call it number
= Startup

1. Setthe numberofall nodestoo

2. Pick an arbitrary node v and run Detect(u, 1)
= Detect(nodev, intr)

1. Set number(v) = i++

2. Foreachnode v adjacenttov
If number(uv) is o
Detect(u, i)
Else
Print “Cycle found!”

= Even graphs with unconnected components can have cycles
= To be sure that there are no cycles, we need to run the
algorithm on every starting node that hasn't been visited yet

Topological Sort

= Adirected acyclic graph (DAG) is a directed graph without cycles
init

= Well, obviously.

= These can be used to represent dependencies between tasks

= An edge flows from the task that must be completed first to a task
that must come after

= This is a good model for course sequencing
= Especially during advising

= A cyclein such a graph would mean there was a circular
dependency

= By running topological sort, we discover if a directed graph has a
cycle, as a side benefit

= A topological sort gives an ordering of the tasks such that all
tasks are completed in dependency ordering

= |[n other words, no task is attempted before its prerequisite
tasks have been done

= There are usually multiple legal topological sorts for a given
DAG

= Give a topological sort for the following DAG:

= AFICGKDIJEH

Create list L
Add all nodes with no incoming edges into set S

While S is not empty
= Remove anodeufrom$S

= AddutolL

= For each node vwithanedgeefromutov
Remove edge e from the graph
If v has no other incoming edges, addvto S
If the graph still has edges
= Print "Error! Graph has a cycle"
Otherwise

= ReturnlL

Connectivity

= Connected for an undirected graph:
There is a path from every node to every other node
= How can we determine if a graph is connected?

= Startup

1. Setthe number of all nodesto o

2. Pick an arbitrary node uand run DFS(v, 1)
= DFS(nodev, int/)
1. Set number(v) = i++

2. Foreach node v adjacenttov

If number(u) is o
DFS(u, i)

= [f any node has a number of o, the graph is not connected

Connected components are the parts of the graph that are
connected to each other

In a connected graph, the whole graph forms a connected
component

In a graph that is not entirely connected, how do we find
connected components?
DFS again!

= We run DFS on every unmarked node and mark all nodes with a number
count

= Each time DFS completes, we increment count and start DFS on the next
unmarked node

= All nodes with the same value are in a connected component

= Weakly connected directed graph:
If the graph is connected when you make all the edges
undirected

= Strongly connected directed graph:
If for every pair of nodes, there is a path between them in
both directions

= Components of a directed graph can be strongly connected

= A strongly connected component is a subgraph such that all
its nodes are strongly connected

= To find strongly connected components, we can use a special

DFS

= |[tincludes the notion of a predecessor node, which is the

owest numbered node in the DFS that can reach a particular
node

= There's an algorithm for it, but it's more complicated than we
want to get into

Minimum Spanning Tree

= An airline has to stop running direct flights between some
cities
= But, it still wants to be able to reach all the cities that it can

now
= What's the set of flights with the lowest total cost that will
keep all cities connected?

= Essentially, what's the lowest cost tree that keeps the graph
connected?

= This tree is called the minimum spanning tree or MST
= |t has countless applications in graph problems
= How do we find such a thing?

4.

Start with two sets, S and V:
= S has the starting node in it

= V has everything else
Find the node uin Vthatis closestto any nodein S
Put the edge to v into the MST
Move ufrom Vto S
If Vis not empty, go back to Step 2

= Naive implementation with an adjacency matrix

= O(|V[*)
= Adjacency lists with binary heap
* O(|E[log [V])

= Adjacency lists with Fibonacci heap
* O(|E| + [V]log |V])

Upcoming

= Dijkstra's algorithm
= Matching

= Stable marriage

= Euler paths and tours

Because of the Al Task Force, | won't have my normal 1:45-
2:45 office hours today

= But! | will available from 1-1:45 instead

Keep working on Project 3

Finish Assignment 4

= Due tonight!

Read sections 6.2 and 6.4

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 4
	Cycle Detection
	Trees
	When a tree falls in the woods…
	Cycle detect pseudocode
	Full cycle detection
	Is there a cycle?
	Topological Sort
	Directed acyclic graph
	Topological sort
	Topological sort
	Topological sort algorithm
	Connectivity
	Connected graph?
	DFS to the rescue again!
	Connected?
	Connected components
	Directed connectivity
	Short of strong connectivity
	Minimum Spanning Tree
	What if…
	Minimum spanning tree
	Prim's Algorithm
	MST Example
	Prim's algorithm running time
	MST practice
	Upcoming
	Next time…
	Reminders

