Week 9 - Friday

COMP 2100

Last time

- What did we talk about last time?
- Graph representations
 - Adjacency matrix
 - Adjacency lists
- Depth-first search
- Breadth-first search

Questions?

Project 3

Assignment 4

Cycle Detection

Trees

- We have spent a huge amount of time on trees in this class
- Trees have many useful properties
- What is the important difference between a tree and a graph?
- Cycles
 - Well, technically a tree is also connected

When a tree falls in the woods...

- Is a graph a tree?
- It might be hard to tell
- We need to come up with an algorithm for detecting any cycles within the possible tree
- What can we use?
- Depth First Search!

Cycle detect pseudocode

- Nodes all need some extra information, call it number
- Startup
 - 1. Set the number of all nodes to o
 - 2. Pick an arbitrary node $\boldsymbol{\upsilon}$ and run Detect($\boldsymbol{\upsilon}$, 1)
- Detect(node v, int i)
 - 1. Set number(\mathbf{v}) = \mathbf{i} ++
 - For each node *u* adjacent to *v*

```
If number(u) is o

Detect(u, i)

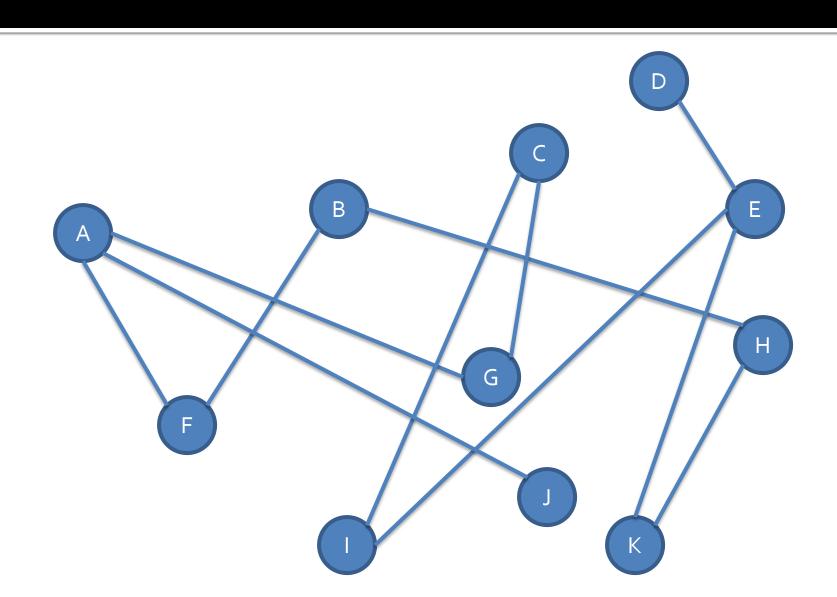
Else

Print "Cycle found!"
```

Full cycle detection

- Even graphs with unconnected components can have cycles
- To be sure that there are no cycles, we need to run the algorithm on every starting node that hasn't been visited yet

Is there a cycle?



Topological Sort

Directed acyclic graph

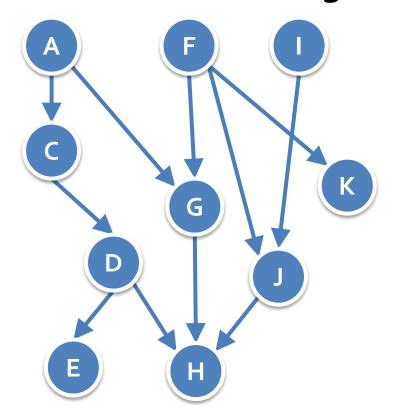
- A directed acyclic graph (DAG) is a directed graph without cycles in it
 - Well, obviously.
- These can be used to represent dependencies between tasks
- An edge flows from the task that must be completed first to a task that must come after
- This is a good model for course sequencing
 - Especially during advising
- A cycle in such a graph would mean there was a circular dependency
- By running topological sort, we discover if a directed graph has a cycle, as a side benefit

Topological sort

- A topological sort gives an ordering of the tasks such that all tasks are completed in dependency ordering
- In other words, no task is attempted before its prerequisite tasks have been done
- There are usually multiple legal topological sorts for a given DAG

Topological sort

Give a topological sort for the following DAG:



AFICGKDJEH

Topological sort algorithm

- Create list L
- Add all nodes with no incoming edges into set S
- While S is not empty
 - Remove a node u from S
 - Add *u* to *L*
 - For each node v with an edge e from u to v
 - Remove edge **e** from the graph
 - If v has no other incoming edges, add v to S
- If the graph still has edges
 - Print "Error! Graph has a cycle"
- Otherwise
 - Return L

Connectivity

Connected graph?

- Connected for an undirected graph:
 - There is a path from every node to every other node
- How can we determine if a graph is connected?

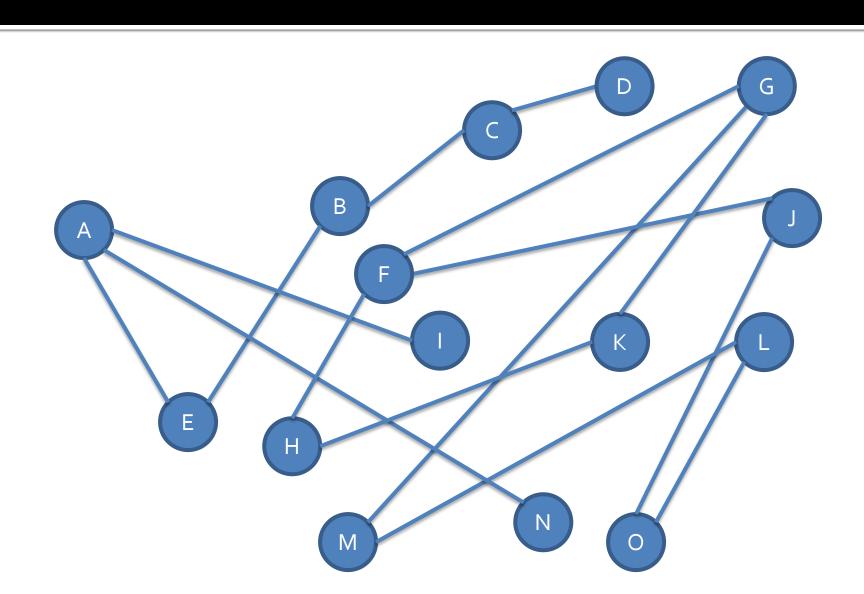
DFS to the rescue again!

- Startup
 - 1. Set the number of all nodes to o
 - 2. Pick an arbitrary node $\boldsymbol{\upsilon}$ and run DFS($\boldsymbol{\upsilon}$, 1)
- DFS(node v, int i)
 - 1. Set number(\mathbf{v}) = \mathbf{i} ++
 - 2. For each node **u** adjacent to **v**

```
If number(\boldsymbol{u}) is o DFS(\boldsymbol{u}, \boldsymbol{i})
```

If any node has a number of o, the graph is not connected

Connected?



Connected components

- Connected components are the parts of the graph that are connected to each other
- In a connected graph, the whole graph forms a connected component
- In a graph that is not entirely connected, how do we find connected components?
- DFS again!
 - We run DFS on every unmarked node and mark all nodes with a number count
 - Each time DFS completes, we increment count and start DFS on the next unmarked node
 - All nodes with the same value are in a connected component

Directed connectivity

- Weakly connected directed graph:
 If the graph is connected when you make all the edges undirected
- Strongly connected directed graph:
 If for every pair of nodes, there is a path between them in both directions

Short of strong connectivity

- Components of a directed graph can be strongly connected
- A strongly connected component is a subgraph such that all its nodes are strongly connected
- To find strongly connected components, we can use a special DFS
- It includes the notion of a predecessor node, which is the lowest numbered node in the DFS that can reach a particular node
- There's an algorithm for it, but it's more complicated than we want to get into

Minimum Spanning Tree

What if...

- An airline has to stop running direct flights between some cities
- But, it still wants to be able to reach all the cities that it can now
- What's the set of flights with the lowest total cost that will keep all cities connected?
- Essentially, what's the lowest cost tree that keeps the graph connected?

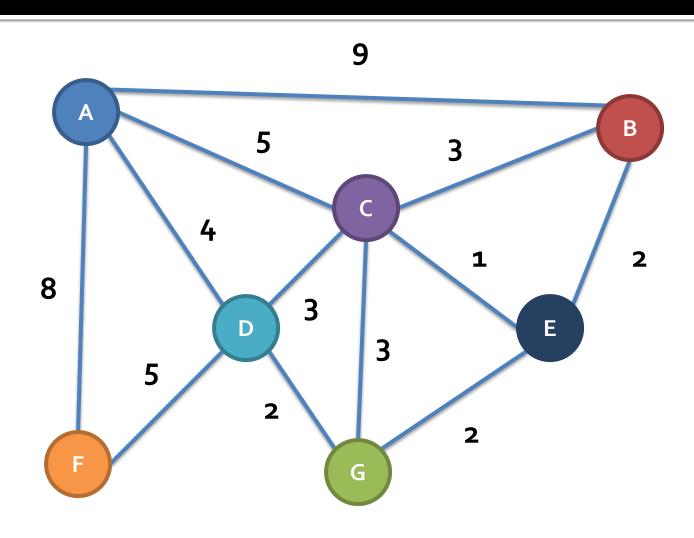
Minimum spanning tree

- This tree is called the minimum spanning tree or MST
- It has countless applications in graph problems
- How do we find such a thing?

Prim's Algorithm

- Start with two sets, S and V:
 - **S** has the starting node in it
 - V has everything else
- 2. Find the node $\boldsymbol{\upsilon}$ in \boldsymbol{V} that is closest to any node in \boldsymbol{S}
- 3. Put the edge to **u** into the MST
- 4. Move $\boldsymbol{\upsilon}$ from \boldsymbol{V} to \boldsymbol{S}
- 5. If **V** is not empty, go back to Step 2

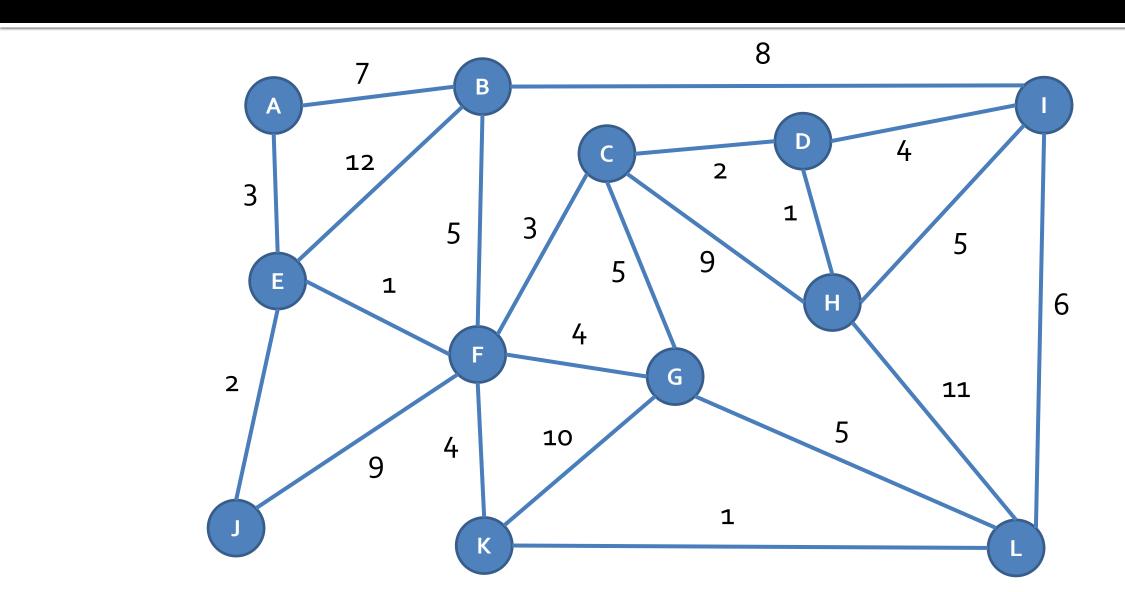
MST Example



Prim's algorithm running time

- Naïve implementation with an adjacency matrix
 - O(|V|²)
- Adjacency lists with binary heap
 - O(|*E*| log |*V*|)
- Adjacency lists with Fibonacci heap
 - O(|E| + |V| log |V|)

MST practice



Upcoming

Next time...

- Dijkstra's algorithm
- Matching
- Stable marriage
- Euler paths and tours

Reminders

- Because of the AI Task Force, I won't have my normal 1:45-2:45 office hours today
 - But! I will available from 1-1:45 instead
- Keep working on Project 3
- Finish Assignment 4
 - Due tonight!
- Read sections 6.2 and 6.4