Week g - Friday

COMP 2100




= What did we talk about last time?

= Graph representations
= Agjacency matrix

= Adjacency lists
= Depth-first search
= Breadth-first search



Questions?




Project 3




Assignment 4




Cycle Detection




= We have spent a huge amount of time on trees in this class

= Trees have many useful properties

= What is the important difference between a tree and a graph?
m Cycles

= Well, technically a tree is also connected



= [sagraph atree?

= [t might be hard to tell

= We need to come up with an algorithm for detecting any
cycles within the possible tree

= What can we use?

= Depth First Search!



= Nodes all need some extra information, call it number
= Startup

1. Setthe numberofall nodestoo

2. Pick an arbitrary node v and run Detect(u, 1)
= Detect(nodev, intr)

1. Set number(v) = i++

2. Foreachnode v adjacenttov
If number(uv) is o
Detect(u, i)
Else
Print “Cycle found!”



= Even graphs with unconnected components can have cycles
= To be sure that there are no cycles, we need to run the
algorithm on every starting node that hasn't been visited yet






Topological Sort




= Adirected acyclic graph (DAG) is a directed graph without cycles
init

= Well, obviously.

= These can be used to represent dependencies between tasks

= An edge flows from the task that must be completed first to a task
that must come after

= This is a good model for course sequencing
= Especially during advising

= A cyclein such a graph would mean there was a circular
dependency

= By running topological sort, we discover if a directed graph has a
cycle, as a side benefit



= A topological sort gives an ordering of the tasks such that all
tasks are completed in dependency ordering

= |[n other words, no task is attempted before its prerequisite
tasks have been done

= There are usually multiple legal topological sorts for a given
DAG



= Give a topological sort for the following DAG:

= AFICGKDIJEH



Create list L
Add all nodes with no incoming edges into set S

While S is not empty
= Remove anodeufrom$S

= AddutolL

= For each node vwithanedgeefromutov
Remove edge e from the graph
If v has no other incoming edges, addvto S
If the graph still has edges
= Print "Error! Graph has a cycle"
Otherwise

= ReturnlL



Connectivity




= Connected for an undirected graph:
There is a path from every node to every other node
= How can we determine if a graph is connected?



= Startup

1. Setthe number of all nodesto o

2. Pick an arbitrary node uand run DFS( v, 1)
= DFS(nodev, int/)
1. Set number(v) = i++

2. Foreach node v adjacenttov

If number(u) is o
DFS(u, i)

= [f any node has a number of o, the graph is not connected






Connected components are the parts of the graph that are
connected to each other

In a connected graph, the whole graph forms a connected
component

In a graph that is not entirely connected, how do we find
connected components?
DFS again!

= We run DFS on every unmarked node and mark all nodes with a number
count

= Each time DFS completes, we increment count and start DFS on the next
unmarked node

= All nodes with the same value are in a connected component



= Weakly connected directed graph:
If the graph is connected when you make all the edges
undirected

= Strongly connected directed graph:
If for every pair of nodes, there is a path between them in
both directions



= Components of a directed graph can be strongly connected

= A strongly connected component is a subgraph such that all
its nodes are strongly connected

= To find strongly connected components, we can use a special

DFS

= |[tincludes the notion of a predecessor node, which is the

owest numbered node in the DFS that can reach a particular
node

= There's an algorithm for it, but it's more complicated than we
want to get into




Minimum Spanning Tree




= An airline has to stop running direct flights between some
cities
= But, it still wants to be able to reach all the cities that it can

now
= What's the set of flights with the lowest total cost that will
keep all cities connected?

= Essentially, what's the lowest cost tree that keeps the graph
connected?



= This tree is called the minimum spanning tree or MST
= |t has countless applications in graph problems
= How do we find such a thing?



4.

Start with two sets, S and V:
= S has the starting node in it

= V has everything else
Find the node uin Vthatis closestto any nodein S
Put the edge to v into the MST
Move ufrom Vto S
If Vis not empty, go back to Step 2






= Naive implementation with an adjacency matrix

= O(|V[*)
= Adjacency lists with binary heap
* O(|E[ log [V])

= Adjacency lists with Fibonacci heap
* O(|E| + [V]log |V])






Upcoming




= Dijkstra's algorithm
= Matching

= Stable marriage

= Euler paths and tours



Because of the Al Task Force, | won't have my normal 1:45-
2:45 office hours today

= But! | will available from 1-1:45 instead

Keep working on Project 3

Finish Assignment 4

= Due tonight!

Read sections 6.2 and 6.4
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